B 3.1 REACTIVITY CONTROL SYSTEMS ## B 3.1.2 Core Reactivity #### **BASES** #### BACKGROUND According to GDC 26, GDC 28, and GDC 29 (Ref. 1), reactivity shall be controllable, such that subcriticality is maintained under cold conditions, and acceptable fuel design limits are not exceeded during normal operation and anticipated operational occurrences. Therefore, reactivity balance is used as a measure of the predicted versus measured core reactivity during power operation. The periodic confirmation of core reactivity is necessary to ensure that Design Basis Accident (DBA) and transient safety analyses remain valid. A large reactivity difference could be the result of unanticipated changes in fuel, control rod worth, or operation at conditions not consistent with those assumed in the predictions of core reactivity, and could potentially result in a loss of SDM or violation of acceptable fuel design limits. Comparing predicted versus measured core reactivity validates the nuclear methods used in the safety analysis and supports the SDM demonstrations (LCO 3.1.1, "SHUTDOWN MARGIN (SDM)) in ensuring the reactor can be brought safely to cold, subcritical conditions. When the reactor core is critical or in normal power operation, a reactivity balance exists and the net reactivity is zero. A comparison of predicted and measured reactivity is convenient under such a balance, since parameters are being maintained relatively stable under steady state power conditions. The positive reactivity inherent in the core design is balanced by the negative reactivity of the control components, thermal feedback, neutron leakage, and materials in the core that absorb neutrons, such as burnable absorbers producing zero net reactivity. Excess reactivity can be inferred from the boron letdown curve (or critical boron curve), which provides an indication of the soluble boron concentration in the Reactor Coolant System (RCS) versus cycle burnup. Periodic measurement of the RCS boron concentration for comparison with the predicted value with other variables fixed (such as rod height, temperature, pressure, and power), provides a convenient method of ensuring that core reactivity is within design expectations and that the calculational models used to generate the safety analysis are adequate. In order to achieve the required fuel cycle energy output, the uranium enrichment, in the new fuel loading and in the fuel remaining from the previous cycle, provides excess positive reactivity beyond that required to #### BACKGROUND (continued) sustain steady state operation throughout the cycle. When the reactor is critical at RTP and moderator temperature, the excess positive reactivity is compensated by burnable absorbers (if any), control rods, whatever neutron poisons (mainly xenon and samarium) are present in the fuel, and the RCS boron concentration. When the core is producing THERMAL POWER, the fuel and burnable absorber are being depleted and excess reactivity (except possibly near BOC) is decreasing. As the fuel and burnable absorber deplete, the RCS boron concentration is adjusted to compensate for the net core reactivity change while maintaining constant THERMAL POWER. The boron letdown curve is based on steady state operation at RTP. Therefore, deviations from the predicted boron letdown curve may indicate deficiencies in the design analysis, deficiencies in the calculational models, or abnormal core conditions, and must be evaluated. # **APPLICABLE** The acceptance criteria for core reactivity are that the reactivity balance SAFETY ANALYSES limit ensures plant operation is maintained within the assumptions of the safety analyses. > Accurate prediction of core reactivity is either an explicit or implicit assumption in the accident analysis evaluations. Every accident evaluation (Ref. 2) is, therefore, dependent upon accurate evaluation of core reactivity. In particular, SDM and reactivity transients, such as control rod withdrawal accidents or rod ejection accidents, are very sensitive to accurate prediction of core reactivity. These accident analysis evaluations rely on computer codes that have been qualified against available test data, operating plant data, and analytical benchmarks. Monitoring reactivity balance additionally ensures that the nuclear methods provide an accurate representation of the core reactivity. Design calculations and safety analyses are performed for each fuel cycle for the purpose of predetermining reactivity behavior and the RCS boron concentration requirements for reactivity control during fuel depletion. The comparison between measured and predicted initial core reactivity provides a normalization for the calculational models used to predict core reactivity. If the measured and predicted RCS boron concentrations for identical core conditions at beginning of cycle (BOC) do not agree, then the assumptions used in the reload cycle design analysis or the calculational models used to predict soluble boron requirements may not be accurate. If reasonable agreement between measured and predicted core reactivity exists at BOC, then the prediction may be normalized to ## APPLICABLE SAFETY ANALYSES (continued) the measured boron concentration. Thereafter, any significant deviations in the measured boron concentration from the predicted boron letdown curve that develop during fuel depletion may be an indication that the calculational model is not adequate for core burnups beyond BOC, or that an unexpected change in core conditions has occurred. The normalization of predicted RCS boron concentration to the measured value is typically performed after reaching RTP following startup from a refueling outage, with the control rods in their normal positions for power operation. The normalization is performed near BOC conditions, so that core reactivity relative to predicted values can be continually monitored and evaluated as core conditions change during the cycle. Core reactivity satisfies Criterion 2 of 10 CFR 50.36 (Ref. 3). LCO Long term core reactivity behavior is a result of the core physics design and cannot be easily controlled once the core design is fixed. During operation, therefore, the LCO can only be ensured through measurement and tracking, and appropriate actions taken as necessary. Large differences between actual and predicted core reactivity may indicate that the assumptions of the DBA and transient analyses are no longer valid, or that the uncertainties in the Nuclear Design Methodology are larger than expected. A limit on the reactivity balance of \pm 1% Δ k/k has been established based on engineering judgment. A 1% deviation in reactivity from that predicted is larger than expected for normal operation and should therefore be evaluated. When measured core reactivity is within 1% $\Delta k/k$ of the predicted value at steady state thermal conditions, the core is considered to be operating within acceptable design limits. Since deviations from the limit are normally detected by comparing predicted and measured steady state RCS critical boron concentrations, the difference between measured and predicted values would be between approximately 100 - 150 ppm (depending on the boron worth) before the limit is reached. These values are well within the uncertainty limits for analysis of boron concentration samples, so that spurious violations of the limit due to uncertainty in measuring the RCS boron concentration are unlikely. **APPLICABILITY** The limits on core reactivity must be maintained during MODES 1 and 2 because a reactivity balance must exist when the reactor is critical or producing THERMAL POWER. As the fuel depletes, core conditions are changing, and confirmation of the reactivity balance ensures the core is ## APPLICABILITY (continued) operating as designed. This Specification does not apply in MODES 3, 4, and 5 because the reactor is shut down and the reactivity balance is not changing. In MODE 6, fuel loading results in a continually changing core reactivity. Boron concentration requirements (LCO 3.9.1, "Boron Concentration") ensure that fuel movements are performed within the bounds of the safety analysis. An SDM demonstration is required during the first startup following operations that could have altered core reactivity (e.g., fuel movement, control rod replacement, control rod shuffling). #### ACTIONS A.1 and A.2 Should an anomaly develop between measured and predicted core reactivity, an evaluation of the core design and safety analysis must be performed. Core conditions are evaluated to determine their consistency with input to design calculations. Measured core and process parameters are evaluated to determine that they are within the bounds of the safety analysis, and safety analysis calculational models are reviewed to verify that they are adequate for representation of the core conditions. The required Completion Time of 72 hours is based on the low probability of a DBA occurring during this period, and allows sufficient time to assess the physical condition of the reactor and complete the evaluation of the core design and safety analysis. Following evaluations of the core design and safety analysis, the cause of the reactivity anomaly may be resolved. If the cause of the reactivity anomaly is a mismatch in core conditions at the time of RCS boron concentration sampling, then a recalculation of the RCS boron concentration requirements may be performed to demonstrate that core reactivity is behaving as expected. If an unexpected physical change in the condition of the core has occurred, it must be evaluated and corrected, if possible. If the cause of the reactivity anomaly is in the calculation technique, then the calculational models must be revised to provide more accurate predictions. If any of these results are demonstrated, and it is concluded that the reactor core is acceptable for continued operation, then the boron letdown curve may be renormalized and power operation may continue. If operational restriction or additional SRs are necessary to ensure the reactor core is acceptable for continued operation, then they must be defined. The required Completion Time of 72 hours is adequate for preparing whatever operating restrictions or Surveillances that may be required to allow continued reactor operation. #### ACTIONS (continued) ## <u>B.1</u> If the core reactivity cannot be restored to within the 1% Δ k/k limit, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours. If the SDM for MODE 3 is not met, then the boration required by SR 3.1.1.1 would occur. The allowed Completion Time is reasonable, based on operating experience, for reaching MODE 3 from full power conditions in an orderly manner and without challenging plant systems. ## SURVEILLANCE REQUIREMENTS #### SR 3.1.2.1 Core reactivity is verified by periodic comparisons of measured and predicted RCS boron concentrations. The comparison is made, considering that other core conditions are fixed or stable, including control rod position, moderator temperature, fuel temperature, fuel depletion, xenon concentration, and samarium concentration. The Surveillance is performed prior to entering MODE 1 as an initial check on core conditions and design calculations at BOC. The SR is modified by a Note. The Note indicates that the normalization of predicted core reactivity to the measured value must take place within the first 60 effective full power days (EFPD) after each fuel loading. This allows sufficient time for core conditions to reach steady state, but prevents operation for a large fraction of the fuel cycle without establishing a benchmark for the design calculations. The Surveillance Frequency is based on operating experience, equipment reliability, and plant risk and is controlled under the Surveillance Frequency Control Program. #### REFERENCES - 1. 10 CFR 50, Appendix A, GDC 26, GDC 28, and GDC 29. - 2. UFSAR, Chapter 15. - 3. 10 CFR 50.36, Technical Specification, (c)(2)(ii).